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Abstract

We present axisymmetric numerical simulations of transitional and chaotic flow regimes in rotor–stator cavities of radial aspect

ratio approximately 8. These simulations are carried out using a second order time and space accurate algorithm which integrates

the axisymmetric unsteady Navier–Stokes equations in stream function-azimuthal vorticity-azimuthal velocity form. Detailed flow

analysis has been carried out for selected values of the rotational Reynolds number (Reh) up to 10
6. At the largest value considered,

computations have been performed using 4096 mesh points in the radial direction, which has required using a multi-domain de-

composition algorithm implemented on a parallel machine. The limitations and consequences of the axisymmetry assumption are

first discussed and checked against available experimental results. The evolutions of the instantaneous flow structure and of its first

and second order statistic moments as the Reynolds number increases are discussed. It is shown that the dynamics of the flow mainly

consists of travelling waves propagating in the stator and rotor boundary layers and of inertial waves in the core region, and that for

moderate Reynolds numbers (Reh ’ 3� 105), the rotor boundary layer is almost completely steady while large amplitude fluctu-

ations are found in the stator boundary layer. The evolution of second order moments confirms the fundamentally asymmetrical role

of the boundary layers along the rotor and along the stator. A turbulent kinetic energy budget is shown which exhibits some specific

features attributed to the rotation effects and to a lesser extent to the axisymmetry assumption. � 2002 Published by Elsevier Science

Inc.

1. Introduction

Computation of turbulent flow between two differ-
entially rotating disks is of considerable engineering
interest. Many engineering configurations, such as the
secondary cooling flows in turbomachines or the flows
in the torque converter of an automatic gearbox, can be
described by an enclosure of large radial aspect ratio
bounded by one stationary disk (the stator) and another
rotating about its axis of symmetry (the rotor). In such
a configuration, the flow structure consists of the su-
perposition of a primary azimuthal flow, which is driven
by viscous shear, and a secondary flow in the cross
section of the cavity due to rotation effects. This sec-
ondary flow generally consists of two boundary layers,
one outward along the rotor and one inward along the
stator. Depending on the values of the aspect ratio and

Reynolds number, a core region of zero radial velocity
rotating locally as a solid body can exist between both
boundary layers. The radial distribution of this angular
velocity in the core (equal to 0.313 for the laminar
similarity solution) is thus of paramount engineering
interest since it directly governs the radial pressure dis-
tribution and hence the axial forces on the disks. In most
practical cases, these flows are, if not fully turbulent, at
least largely transitional. It has long been recognized
that both boundary layers have different stability
properties, the rotor boundary layer being much more
stable than that along the stator (Itoh et al., 1990). As a
consequence there exist flows which are laminar in some
regions of the cavity and turbulent in others. It has also
been observed that the boundary conditions on the pe-
ripheral shroud and on the internal hub have an im-
portant influence, not only on the radial distribution of
the azimuthal velocity but because they also directly
affect the onset of transition and consequently the in-
tensity of turbulence. In addition, fundamental studies
have shown that rotation can significantly affect the
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characteristics of turbulence, namely reduction of the
dissipation rate of the turbulent kinetic energy (Cambon
and Jacquin, 1989; Ibbetson and Tritton, 1975), increase
of the anisotropy (Cambon and Jacquin, 1989) and
strong reduction of the extension of the logarithmic wall
region (Nagano et al., 1991).

All these specific features make accurate computa-
tions of these turbulent flows a formidable challenge. In
particular, mixing length (Chew and Vaughan, 1988)
and j–� turbulence models have been reported to pro-
duce unsatisfactory results (Randriamampianina et al.,
1997), and the development of improved models has
been an area of extensive research over the last few
years. A review of most of these recent efforts is avail-
able in Iacovides and Launder (1995). Although im-
proved predictions can be expected and are indeed
obtained from Reynolds stress models (RSM), such as
those developed to account for rotation (Elena and
Schiestel, 1996), such computations are still very ex-
pensive, not mentioning numerical stability problems.
Improved j–� models or algebraic stress models (ASM)
can thus still represent a good compromise between
accuracy and computational time (Iacovides and
Launder, 1995; Ton and Lin, 1994) and detailed data are
therefore needed in order to understand the origin of
their alleged limitations.

Our initial aim was to perform direct numerical
simulations (DNS) at large enough Reynolds numbers
in order to contribute such data and establish reference
solutions. Due to the simultaneous improvements in

algorithms and computing resources, DNS has now
become a powerful and reliable tool to investigate fluid
flows in the transitional and turbulent regimes. The re-
sults not only give access to detailed information on the
space and time evolution of the flow structures, which
are of interest on their own, but can also help compute
statistical moments of the flow quantities and charac-
terize deviations from the mean quantities, information
increasingly needed in engineering applications. DNS is,
however, generally restricted to academic configura-
tions, most of them consisting of one inhomogeneous
direction coupled with 1 or 2 directions in which peri-
odicity is assumed. In a pioneering contribution, Fromm
(1987, 1988) performed simulations of rotor–stator
flows using both the assumption of axisymmetry and of
periodicity in the radial direction. He was able to show
that even under these rather crude approximations the
computations reproduced the instantaneous asymmetric
behavior of the boundary layers on the rotor and on the
stator after the onset of transition. In most rotor–stator
configurations, the presence of the outer shroud strongly
influences the flow and needs to be taken into account.
Reaching the boundary layer regime of interest in the
presence of a shroud leads one to consider cavities of
relatively large radial aspect ratios, which turn out to be
very computationally demanding, as also noted by
Randriamampianina et al. (1997). As will be discussed
later, reaching the largest rotational Reynolds number
considered here has required a very large number of grid
points in the ðr; zÞ cross section plane, and carrying out

Nomenclature

Cm ¼ M=ð1=2ÞqX2R5
2, torque coefficient

G ¼ H=R2, gap ratio
H disks clearance
M ¼ 2p

R
lR2ðoU2=oZÞwall dR, torque

R radial location
R1 internal radius (hub)
R2 external radius (peripheral shroud)
ReH ¼ H 2X=m, Reynolds number
Reh ¼ R2

2X=m, rotational Reynolds number
Rer ¼ r2X=m, local Reynolds number
U radial velocity component
Us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
, wall frictional velocity

V azimuthal velocity component
W axial velocity component
Z axial location
r dimensionless radial location (R=H )
s ¼ R1=R2, radius ratio
u dimensionless radial component of the ve-

locity (U1=HX)
v dimensionless azimuthal component of the

velocity

w dimensionless axial component of the veloc-
ity

yþ ¼ Zðus=mÞ, dimensionless wall coordinate
z dimensionless axial location (Z=H )
C boundary of the computational domain
D mesh size
X angular rotational velocity of the rotor
� viscous dissipation rate of the turbulent ki-

netic energy
j turbulent kinetic energy
g Kolmogorov scale
h azimuthal coordinate
l kinematic viscosity
m dynamic viscosity
q density
sw ¼ lðoUs=oNÞ, wall shear stress
w stream function
x azimuthal component of the vorticity
o=oN wall normal derivative
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full 3D computations would have been barely feasible.
We have thus decided to carry out computations under
the axisymmetric assumption in order to reach Reynolds
numbers corresponding to actual turbulent flows. We
thus initially undertook these simulations in a geometry
given to us 1 as an actual rotor–stator cavity. This cavity
is characterized by the presence of an inner hub and
extends from R1 > 0 to R2 in the radial direction, and
both the inner hub and outer shroud are attached to the
stator. In order to produce somewhat more general re-
sults, the computations were also extended for one given
Reynolds number to a cavity extending from the axis of
rotation to the same external radius, which corresponds
exactly to the geometry investigated by Cheah et al.
(1994).

In both cases, the computations were performed under
the assumption of axisymmetry of the instantaneous
flow. This assumption may obviously seem highly ques-
tionable and this point will be addressed in more detail in
the second paragraph. Let us again point out here that
this assumption was dictated by memory and cpu time
limitations due to the huge number of grid points which
would have been required to reach the highest value of
the Reynolds number in the configuration considered
here. Reaching asymptotic axisymmetric solutions and
computing significant first, second and third order mo-
ments has required the equivalent of several thousands of
cpu hours on a Cray C90 and a Cray T3E. We have re-
cently started to extend these computations to 3D. Pre-
liminary tests have been carried out for laminar flows just
at the onset of unsteadiness. The results will be reported
elsewhere. These tests have shown that extending to 3D
the computations for the same range of Reynolds num-
bers as those considered here is hardly feasible at present.
We nonetheless believe that the present axisymmetric
computations, although they probably miss some key
features of actual flows and cannot therefore claim to
match quantitatively actual flow experiments, will prove
helpful both at present for the insight they give into the
flow dynamics and later as a reference to interpret 3D
effects as 3D flow data become available.

This article is organized as follows. We present in the
next section the geometrical configuration and recall
the governing equations. The numerical algorithm used
to perform the axisymmetric numerical simulations
is described next. The numerical requirements are also
addressed. The validity and consequences of the axi-
symmetry assumption are discussed next, first on the
basis of scaling arguments and secondly by comparisons
of our simulations against the experimental results of
Cheah et al. (1994). The presentation of the results starts
with a discussion of the evolution of the instantaneous
space and time structure of the flow in the first configu-

ration for the various Reynolds numbers investigated.
We then discuss the evolution of the mean flow quantities
and of their second order moments. A kinetic energy
budget is shown next. Although in general agreement
with those found in other types of flows, it does exhibit
some specific features which should be reproduced by
classical turbulence modelling. A detailed comparison of
these results with those obtained from a j–� computation
has been presented in Jacques et al. (1998).

2. Configuration and numerical algorithm

2.1. Configuration

We consider the flow of an incompressible newtonian
fluid in a rotor–stator type cavity (see Fig. 1), whose
lower horizontal plate rotates with angular velocity X.
The clearance between the disks is H and these extend
from R1 to R2 in the radial direction. Using the clearance
H as the reference length, the computational domain
reduces to the cross section ½R1=H ;R2=H � � ½0; 1�. The
usual gap ratio G is defined as (H=R2). For cavities
which do not extend throughout to the rotation axis
(i.e., R1 > 0), complete definition of the geometry re-
quires an additional parameter, the radius ratio s, which
is defined as R1=R2. As stated in the introduction, we
have considered two different geometries. The first
one, hereafter referred to as CV1, is characterized by
G ¼ 0:125 and s ¼ 0:25, and the second, referred to as
CV2, is exactly the geometry considered in Cheah et al.
(1994) and corresponds toG ¼ 0:127 and s ¼ 0 (Table 1).
In both cavities the peripheral shroud is attached to the
stator. In the first case, the inner hub is also assumed to
be attached to the stator.

Under the assumption of axisymmetry, the di-
mensionless governing equations written in cylindrical
coordinates with respect to a stationary frame reduce to
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where u, v, w are the radial, azimuthal and axial di-
mensionless velocity components, respectively, and P
the pressure. These equations have been made dimen-
sionless using H as reference length and XH as reference
velocity. The Reynolds number which appears in the
equations thus reads ReH ¼ XH 2=m. It is customary to1 This work was carried out under a joint SNECMA-CNRS grant.
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present the results in terms of the usual rotational
Reynolds number Reh ¼ XR2

2=m and one has ReH ¼
G2Reh.

2.2. Numerical algorithm

For these axisymmetric numerical simulations, the
equations are cast into the alternative stream function
(w), azimuthal vorticity (x) and azimuthal velocity (v)
formulation. The basic algorithm is described in Vanel
et al. (1986) (see also Daube, 1992) and is only briefly
recalled here. The time-stepping scheme combines an
implicit treatment of the viscous terms and an explicit
Adams–Bashforth extrapolation of the non-linear con-
vective terms. Application of this time-stepping scheme
yields an unsteady Stokes problem for the coupled
variables (w;x), and Helmholtz problem for the azi-
muthal velocity component v at each time step. These
elliptic equations are supplemented with boundary
conditions expressing the no-slip condition at the walls.
Whereas the Helmholtz problem for v can be readily
solved, the boundary conditions for the Stokes problem
are wjC ¼ 0, ðow=onÞjC ¼ 0 which prevents the solution
of these equations in a decoupled form. This problem is
circumvented by the use of an influence matrix technique
which allows one to determine the vorticity boundary
values that ensure ðow=onÞjC ¼ 0. Solving the unsteady
Stokes problem thus reduces to solving four elliptic
problems. In total five Helmholtz problems have thus to
be solved at each time step. Spatial discretization consists
of a second order centered finite difference scheme. The
three independent variables are discretized at the same
locations (iDr; jDz).

The Helmholtz solvers use partial diagonalization in
the z direction, coupled to an LU direct decomposition
in the radial direction. To port this algorithm on a

parallel machine, a domain decomposition in the radial
direction is implemented. It consists of an exact alge-
braic reorganization of the discrete Helmholtz problems
which considers as primary variables the unknowns on
the interfaces between the subdomains, and as second-
ary variables the unknowns in the subdomains. At each
time step the discrete Helmholtz problems on the whole
computational domain are solved exactly and directly
using the Schur complement algorithm. Each subdo-
main is attached to an elementary processor. The com-
munications between the processors are managed using
the PVM library (Parallel Virtual Machine). We have
used up to 64 processors and the communication time
never exceeded 10% to the total elapsed time. Typical
elapsed cpu time per point and time step was 1:5� 10	6

s on a Cray T3D, and half of that on a T3E.

2.3. Numerical requirements

The numerical results that will be presented below
are obtained with sufficiently fine mesh and time intervals
to ensure that all the scales present in the flow are cap-
tured. This requires a priori estimates of these scales and
a posteriori checks. Uniform spatial meshes were used in
both spatial directions due to the recirculating nature of
the flow, in which small structures can be found inter-
mittently throughout the computational domain. The
mesh size was determined a priori from estimates of
the dissipation rate and confirmed a posteriori from
the computed second order statistics. The a priori Kol-
mogorov scale g was in fact estimated on the Reynolds
number ReH and on the production of kinetic turbulent
energy, assuming the existence of an equilibrium state
(g=H � 1:5� Re	4=5H ). It is also generally admitted that
there must be at least three grid-points within the vis-
cous sublayer (see e.g. Gr€ootzbach, 1983) and that the
mean grid size should not exceed p � g=H . From the
estimate of the wall friction velocity based on the sole
azimuthal velocity component, the normal grid size
must be on the order of: Dz=H 6

ffiffiffi
5

p
Re	3=5H . Satisfaction

of this criterion leads to using 2049� 129 grid points in
the radial and axial direction for ReH ¼ 5000 (Reh ¼
3� 105) and 4097� 513 for ReH ¼ 15625 (Reh ¼ 106).

Table 1

Geometric configurations parameters

Cavity Gap ratio (G) Radius ratio (s)

CV1 0:125 0:25

CV2 (Cheah) 0:127 0

Fig. 1. Geometry.
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In both cases (ReH ¼ 5000 and ReH ¼ 15625), the first
criterion (D ¼

ffiffiffiffiffiffiffiffiffiffiffi
DrDz

p
6 p � g=H ) is satisfied with the

above discretizations. It is thus believed that such spatial
discretizations ensure accurate predictions of the small-
est spatial scales encountered in the flow. The time res-
olution can also be a constraint and the allowable time
steps, dictated by stability requirements, turn out to be
smaller than an estimate of the Kolmogorov time scale
(X � tg ¼ 2:5� Re	3=5H ).

3. Discussion and consequences of axisymmetry assump-
tion

As said in the introduction, the results which will be
reported below were obtained under the assumption of
axisymmetry of the instantaneous flow. The question
then arises of the significance and usefulness of these
results. It is indeed known that 2D numerical simula-
tions miss some important phenomenological features of
transitional and/or turbulent flows, such as bursting in a
transitional boundary layer or in a pipe flow to name
only two examples. Our preliminary fully 3D results
obtained at lower Reynolds number have indeed shown
that transition occurs earlier compared to the axisym-
metric case. The energetics of 2D flows is also different
since the energy cascade in 3D is replaced by an ens-
trophy cascade in 2D (see Lesieur, 1987). We however
believe that, although our results could prove not to
reproduce the actual phenomenology of transitional
and/or turbulent rotor–stator flows, they could prove
not as false as one could imagine a priori both for rea-
sons based on scaling arguments and confirmed by
comparisons with actual experiments.

Let us first point out that the assumption of axi-
symmetry of the instantaneous flow does not imply a
null diagonal stress in the azimuthal direction (as would
be the case in 2D planar flow). This azimuthal diagonal
stress is indeed the largest of the diagonal stresses by
almost an order of magnitude. Further, it is easily seen
that the assumption of axisymmetry of the instanta-
neous flow does not bear on the production terms gov-
erning the growth of the velocity fluctuations ðu0, v0, w0Þ
or of the Reynolds stresses. Indeed, the production
tensor involves only gradients of this mean flow, which
is axisymmetric, and thus reads
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Note that if the similarity assumption were valid, i.e.
ðu; v;wÞ ¼ ðr f ðzÞ; r gðzÞ; hðzÞÞ with 2f þ h0 ¼ 0, this
production tensor would reduce to
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The similarity profiles ðf ; g; hÞ for the boundary layer
regime investigated here display two boundary layers of
thickness Re	1=2H on each side of a rotating core in which
f is identically zero and g is equal to 0.31. The maximum
numerical values for f and h are 0.15 and 0.06, respec-
tively. Examination of the velocity amplitudes in the
closed cavity shows that their characteristic numerical
values do not depart much from these similarity values,
except perhaps in the vicinity of the outer shroud. The
dominant terms in the production tensor are thus the
axial gradients of the mean flow (ou=oz, ov=oz, ow=oz),
which scale as 0:15ðr=HÞRe1=2H , ðr=HÞRe1=2H , and 6�
10	2Re1=2H , respectively. 2 The largest of these three terms
is thus ov=oz, which is almost five times larger than
ou=oz. For a given level of axial velocity fluctuations w0,
the radial and azimuthal velocity fluctuations u0 and v0

present growth rates of ratio 5 approximately and this
accounts for the fact that the azimuthal velocity fluctu-
ations outweigh the radial and axial fluctuations. Like-
wise the production terms for the Reynolds stress tensor,
(i.e. D �RþRt �Dt where R is the symmetrical Rey-
nolds stress tensor) involve the same gradient of the
mean flow and its transpose. Allowing for non-axisym-
metrical instantaneous fluctuations would not alter these
linear growth rates. It would however allow for 3D
linear instabilities and some 3D physical mechanisms to
take place, such as velocity/pressure gradient correla-
tions. The latter mechanism would redistribute the di-
agonal Reynolds stress normal to the rotor and stator to
the other two tangential diagonal stresses. The axisym-
metric assumption does indeed suppress the redistribu-
tion towards v02. However the small value of w02 would
not change much the ratio between v02 and the other two
diagonal stresses, and merely affect the balance between
u02 and w02.

A further confirmation of the validity of the above
procedure is provided by comparisons with the experi-
mental results presented by Cheah et al. (1994). As al-
ready said, these results were obtained in a cavity of
G ¼ 0:127 and s ¼ 0. The peripheral shroud is attached
to the stator. The Reynolds number ReH is set to 4838.7
(Reh ¼ 3� 105). The numbers of grid points in the radial
and axial directions (set to satisfy criteria on the small-
est resolvable scales) are respectively 2813 and 193. This
configuration represents a very severe test due to the
strong asymmetry between the rotor and stator bound-
ary layers. Cheah et al. (1994) provided only mean

2 More precisely ov=oz scales like 0:7ðr=HÞRe1=2H and 0:3ðr=HÞRe1=2H

in the stator and rotor boundary layers respectively.
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quantities and we computed these mean quantities from
our unsteady simulations using a time averaging tech-
nique. Let us just point out that to ensure accurate
means, it was found necessary to integrate the equations
long enough to reach the asymptotic flow regime before
starting the time averaging procedure. In this case, the
equations were first integrated over more than 100 disk
rotation periods (that is approximately 106 time steps
starting from an initial condition corresponding to a
solution already in the chaotic regime) and time aver-
aging was performed on approximately the same time
interval. The averaged fields are obtained from 30 000
samples taken every 40 time steps. It was found neces-
sary to use that many time steps to ensure being in the
asymptotic regime and to obtain reliable averages.

Fig. 2 presents radial and azimuthal mean velocity
profiles at two radial locations. As can be seen, the
general agreement is good. The radial velocity profiles
indeed show an excellent agreement in the rotor
boundary layer, which is still laminar, and good am-
plitudes and trends in the stator boundary layer al-
though the boundary layer thickness at R=R2 ¼ 0:8 is
underestimated. Concerning the azimuthal velocity

components, the profiles in both boundary layers are in
good agreement. The main discrepancy lies in the an-
gular rotational velocity of the core which is overpre-
dicted (10%) by the numerical simulations at the largest
radial position. This is probably a major consequence of
the axisymmetry assumption since it is very likely that
allowing for 3D effects would allow for an earlier tran-
sition in the stator boundary layer and thus reduce the
average core angular velocity. 3

A deeper insight in this confrontation is given by the
comparison of the spatial distribution of some Reynolds
stresses. Fig. 3 presents comparisons of the azimuthal
and axial diagonal turbulence intensities and of the ax-
ial–azimuthal component of the stress tensor at a radial
position R=R2 ¼ 0:8. As can be seen the amplitudes and
shapes are in excellent agreement in the stator boundary
layer. The major discrepancy lies on the rotor side,
which is found turbulent in the experiments and com-

Fig. 2. Comparison with experiment (cavity of Cheah et al.: G ¼ 0:127, s ¼ 0, ReH ¼ 4838:7 (Reh ¼ 3� 105)): axial distribution (from the rotor

(z ¼ 0) to the stator (z ¼ 1)) of the velocity components ((a) U=HX, R=R2 ¼ 0:4; (b) U=HX, R=R2 ¼ 0:8; (c) V =HX, R=R2 ¼ 0:4; (d) V =HX,
R=R2 ¼ 0:8).

3 An upstream shift of the location of the transition point in the

stator boundary layer is enough to explain this effect. This point will be

made clearer while examining the evolution of the core angular

velocity for configuration 1 corresponding to Fig. 8.
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pletely laminar in our simulations. For the experiment,
the transition point seems then to be located in the rotor
boundary layer, whereas it is located in the stator
boundary layer for the computations. We note however
that the large turbulence intensity in the experimental
results along the rotor seems in contradiction with the
mean experimental profiles displayed above, which in-
deed display the characteristic shape of a laminar rotor
boundary layer. This also seems to contradict the gen-
erally assumed result (Itoh et al., 1990) that transition in
the rotor boundary layer takes place at a local radial
rotational Reynolds number Rer of 3:5� 105, i.e. above
the present value.

Lastly, a further argument that could support the
validity of the axisymmetric assumption would lie in the
deviation of the turbulence from an axisymmetric be-
havior. A measure of the state of turbulence is given by
Lumley’s realisability diagram (Lumley and Newman,
1977) as a function of the invariants of the anisotropy
tensor. Given the good agreement between our results
and the experimental values for the Reynolds stresses,
we have used these values to determine the second and
third invariants of the anisotropy tensor. Our repre-

sentative points fall right on the axisymmetric border-
line, an obvious conclusion indeed given the assumption
of axisymmetry. Independent results, computed by
Elena (1994) from second order Reynolds stress mod-
elling, have however indicated that the corresponding
turbulence is not far from the axisymmetric border,
which obviously partially supports the assumption of
axisymmetry.

The above comparisons have shown that the present
numerical simulations, performed under the assumption
of axisymmetry, result in satisfactory predictions of the
mean and second order moments of the flow. We have
supported these observations by a discussion which
points on the specific characteristics of these flows by
comparison with 2D planar flows. Although computa-
tions of rotating flows under the assumption of axisym-
metry inevitably miss some phenomenological features,
we conclude from the above comparisons and discus-
sions that they cannot be boldly rejected and that they
may indeed produce some useful results, at least in the
transitional regime investigated here. This could however
not hold any longer in the fully developed turbulent
regime.

Fig. 3. Comparison with experiment (cavity of Cheah: G ¼ 0:127, s ¼ 0, ReH ¼ 4838:7 (Reh ¼ 3� 105)): axial distributions of some Reynolds stresses

components at the radial location R=R2 ¼ 0:8 (a) V 0V 0=ðRXÞ2, (b) W 0W 0=ðRXÞ2, (c) V 0W 0=ðRXÞ2.
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4. Results

The results to be presented below are obtained in
the first cavity characterized by G ¼ 0:125 and s ¼ 0:25.
The inner hub and peripheral shroud are attached to the
stator. Solutions were computed for a wide range of
rotational Reynolds numbers from 102 to 106. This en-
compasses the steady laminar regime up to a fully cha-
otic regime. These results extend the range of Reynolds
numbers achieved in the axisymmetric simulations
of Randriamampianina et al. (1997), ðReh < 2:5� 105Þ.
The flow was found steady for Reynolds numbers
smaller than ReH ¼ 1300 (Reh ¼ 8:3� 104). For Rey-
nolds numbers ReH P 200 (Reh ¼ 1:3� 104) the flow
displays a Batchelor type structure consisting of two
boundary layers on each side of a core region where
the radial velocity is negligible. The thickness of these

boundary layers scales like 1=
ffiffiffiffiffiffiffiffiffi
ReH

p
. It is noted however

that this solution differs from the usual similarity solu-
tion. This can be seen in the radial distribution of the
contours of v (see Fig. 4(a)) which are not equally spaced
with r as should be the case if the similarity solution
were valid (see also the radial distribution of V =RX
on Fig. 8). Transition to unsteadiness is located for
ReH ¼ 1370 (Reh � 8:7� 104). It is characterized by
mono-periodic oscillations which have their maximum
amplitude in the stator boundary layer, close to the inner
hub. The characteristic fundamental period is close
to 3=4 of a disk rotation period. These oscillations are
due to travelling waves which propagate downstream
through the stator boundary layer (from the peripheral
to the inner hub, see Fig. 4). For the sake of brevity, we
do not discuss any further this periodic solution here,
which will be presented in more detail elsewhere. Recent

Fig. 4. Instantaneous spatial distributions of the azimuthal velocity component (V =HX) for ReH ¼ 1500 (a), ReH ¼ 5000 (b), and ReH ¼ 15625 (c);

cavity CV1 (stator is on the top (1) and rotor is downside (0)).

388 R. Jacques et al. / Int. J. Heat and Fluid Flow 23 (2002) 381–397



experimental observations have shown that, in the range
of aspect ratios considered here, the first instability is
indeed axisymmetric (Schouveiler, 1998).

4.1. Instantaneous flow characteristics

For ReH > 1500 (Reh � 105) the flow becomes cha-
otic. The asymmetry which is observed at the onset of
unsteadiness persists over the whole range of Reynolds
numbers that were considered. The flow displays fluc-
tuations of much larger amplitude in the stator bound-
ary layer than in the rotor boundary layer. This feature
is characteristic of these rotor–stator cavities. It is am-
plified in our particular case due to the boundary con-
ditions we have considered on the inner and outer
shrouds. Indeed, the stationary inner hub helps to re-
laminarize the flow whereas the flow is destabilized
along the stationary outer shroud. We have obtained
asymptotic chaotic solutions for two values of the
Reynolds number, ReH ¼ 5000 (Reh ¼ 3� 105) and
ReH ¼ 15625 (Reh ¼ 106). Typical visualizations of the
azimuthal velocity component field are displayed in Fig.
4. As can be seen, the solution for ReH ¼ 5000 is still
in the transitional regime, whereas that for ReH ¼ 15625
exhibits a fully turbulent region close to the peripheral
shroud.

The solution for ReH ¼ 5000 is characterized by the
intermittent ejection of large eddies, the size of which
is approximatively 1=5 of the cavity height. After their
ejection these eddies generally quickly dissipate. Time
traces of the azimuthal velocity component taken at
different locations are displayed in Fig. 5. As can be
seen, the monitoring points located in the stator
boundary layer exhibit fluctuations of high frequency.
The frequency decreases as the location of the moni-
toring point moves downstream through the stator
boundary layer (from the peripheral shroud to the inner
hub). The amplitude of the oscillations is very large, of
the same order as the mean velocity, and the relative
amplitude of the oscillations thus remains approxi-
mately constant with the local radius. It is also apparent
that the signal taken at a location close to the stator and
in the upstream part of the stator boundary layer (see
Fig. 5(a), R=R2 ¼ 0:8 and Z=H ¼ 0:9) is very asymmet-
ric, the fluctuations above the mean being of smaller
amplitude than those below the mean. At points located
farther downstream at the same distance from the stator
(at Z=H ¼ 0:9 and R=R2 ¼ 0:375), the fluctuations above
and below the mean are approximately symmetrical
around the mean. These different behaviors are ex-
plained by the change of relative location of the points
with respect to the boundary layer thickness since the
boundary layer becomes turbulent as it proceeds
downstream. The upstream point is indeed located on
the outer part of the boundary layer and the presence of
the rotating core thus prevents large fluctuations above

the mean. The point located downstream, although at
the same distance from the stator, is now fully in the
boundary layer and the presence of the core is felt less.

On the other hand time traces at monitoring points
located in the core region or in the rotor boundary layer
display fluctuations of much lower frequency. The vi-
sualization of a set of instantaneous spatial distributions
of the azimuthal velocity shows that the fluctuations in
the core are characterized by periodic oscillations of the
isovalues of the azimuthal velocity in the axial direction.
These oscillations are attributed to inertial wave oscil-
lations which are kept permanently excited by the large
eddies ejected from the stator boundary layer. It is
known that these inertial waves constitute a solution of
the Navier–Stokes equation in a fluid rotating as a solid
body (Lighthill, 1979). In this case, the dispersion rela-
tionship of these waves reads: x ¼ 2� X0 cosðhÞ, where
x represents the pulsation of the inertial waves, X0 the
rotational velocity of the fluid, and h the angle between
the axis of rotation and the waveplanes (constant phase
planes). The dominant dimensionless pulsation of the
oscillations in the core region is almost twice the angular
rotational velocity of the core at a given radius. This
dominant frequency increases slightly with the radial
location, at the same rate as does the angular velocity of
the core. To isolate the spatial structure of these low
frequency oscillations for ReH ¼ 5000, we have made a
Fourier analysis of a sample of instantaneous spatial
distributions of the azimuthal velocity. We have kept the
low frequency component by applying a filter centered
around the dimensionless pulsation 0.8 (which corre-
sponds to the dominant low frequency in the region
0:6 < R=R2 < 0:9) and transformed the filtered spatial
distributions back into physical space. Examination of
the time evolution of the corresponding distributions
indeed shows that these structures are travelling axially
from the stator to the rotor boundary layer (see Fig. 6).
The waveplanes are thus almost normal to the rotation
axis (h ’ p=2) which is consistent with the dispersion
relationship. The measured wavelength k is k ’ 2H=3. A
further characterization of these inertial waves is given
by the comparison of the phase velocity of the fluctua-
tions to the phase velocity of the inertial waves given by
the dispersion relationship V/ ¼ ðkX0=2pÞ sinðhÞ which
are both equal to V/=HX ’ 0:17.

For ReH ¼ 15625, the most distinctive feature is that
the boundary layer along the rotor becomes unstable in
its most downstream part (i.e. R=R2 P 0:8, see also Fig.
10(b)). This, in conjunction with the destabilizing effect
of the stationary outer shroud, results in a very turbu-
lent region that fills the entire clearance for R=R2 P 0:8.
This region is characterized by eddies of size between
H=3 and H=20. The larger eddies may consist of dipoles
which, once formed, move quickly in the core and may
impinge on the rotor boundary layer. This impingement
squeezes the rotor boundary layer and triggers waves
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which propagate downstream. All these phenomena are
very intermittent, especially in the rotor boundary layer.
As a consequence, the core region close to the external
shroud becomes much more homogeneous, as will be
seen in more detail below. Inertial waves are still present
in the core region closer to the inner hub, as can be seen
from Fig. 4, and from power spectra of time traces in
the core region which are not displayed for the sake
of brevity. The value of the local Reynolds number at

which travelling waves are observed in the rotor
boundary layer is approximately 4� 105, corresponding
to R=R2 ’ 0:8. This value is in good agreement with
values generally quoted in the literature. Let us how-
ever emphasize that we believe that this instability is not
intrinsic, but results from the exterior perturbations of
the large eddies ejected from the external shroud or
from the stator boundary layer. These precise effects
could of course be largely due to the assumption of

Fig. 5. Time traces (time unit in laps) and corresponding density power spectra of the azimuthal velocity component (V =HX), (a) stator boundary
layer (R=R2 ¼ 0:8, Z=H ¼ 0:9), (b) stator boundary layer (R=R2 ¼ 0:375, Z=H ¼ 0:9), (c) core region (R=R2 ¼ 0:375, Z=H ¼ 0:5), (d) rotor boundary

layer (R=R2 ¼ 0:375, Z=H ¼ 0:1); cavity CV1, ReH ¼ 5000 (Reh ¼ 3� 105).
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axisymmetry and might not hold for fully three-dimen-
sional flows.

4.2. Turbulence statistics

Time averaged first and second order moments were
computed for the two values of the Reynolds numbers
already presented (ReH ¼ 5000 and 15 625). As previ-
ously discussed, care was taken to integrate long enough
in time to ensure accurate evaluations of these first- and
second-order moments. Accurate third-order moments
were also obtained for ReH ¼ 5000.

4.2.1. Mean flow structure
Time averaged azimuthal velocity fields are presented

in Fig. 7. To a first-order approximation, they display
the usual flow structure characteristic of the Batchelor
type discussed earlier. In particular, both fields show the
existence of a well-defined core region characterized by
zero radial velocity and local rigid body rotation. These
mean flows were obtained after averaging every 30 time
steps (time step value of 6� 10	4 for ReH ¼ 5000 (Reh ¼
3� 105), and 2� 10	4 for ReH ¼ 15625 (Reh ¼ 106))
over time lengths corresponding to respectively 500 and
20 disk rotation periods. The small wiggles still present
in the solution for ReH ¼ 15625 confirm that it is indeed
necessary to integrate the equations for this long to
smooth out the large instantaneous eddies present in the
unsteady solution and to obtain accurate mean values.
Let us also emphasize that it requires less time averaging
for the highest value of the Reynolds number, but of
course more cpu time due to the increased spatial res-
olution and smaller time step value. This is due to the
fact that the solution for the largest Reynolds number is
more turbulent than for the lowest one, which results in
an increased mixing and hence shorter times to average
out the unsteady features.

A closer look at the solution shows however that the
mean flow structure has started to depart significantly
from the asymptotic flow structure corresponding to the
end of the steady laminar regime. This is particularly
visible in the radial profiles of the core swirl ratio
(V =RX) displayed in Fig. 8. The curves corresponding
to the two largest values of the Reynolds number in-
creasingly differ from those obtained for the other three
lower Reynolds numbers (corresponding to laminar flow
regime) at values of R=R2 > 0:7, except that for ReH ¼
5000 which matches the other three very close to the
outer shroud. The rather large differences in the curves
corresponding to the beginning of the unsteady regime
also show the sensitivity of this parameter to the local
characteristics of the stator boundary layer, as already
pointed out by Morse (1991). It appears furthermore
that the radial distribution of the rotational velocity of
the core exhibits a sharp decrease when transition occurs
in the stator boundary layer (the location of the tran-
sition is r=R2 ’ 0:55 for ReH ¼ 1500 ðReh � 105Þ and
r=R2 ’ 0:8 for ReH ¼ 5000 ðReh ¼ 3� 105Þ on Fig. 8).
The radial location of this decrease confirms that the
transition point moves upstream (first from the middle
part of the cavity to the peripheral shroud) in the stator
boundary layer when the Reynolds number increases. It
also confirms the great sensitivity of the core angular
velocity to the location of the transition in the stator
boundary layer.

At the highest Reynolds number, the swirl ratio no
longer exhibits such a decrease since the transition point
has moved to the boundary layer on the peripheral
shroud or in the top part of the rotor boundary layer.
Furthermore, this ratio increases from 0.35 close to
the inner hub to 0.4 approximately in the outer region.
This evolution is probably linked to the unsteadiness in
the rotor boundary layer in its most downstream part,
as reported by others (Cheah et al., 1994). Thus,

Fig. 6. Two instantaneous spatial distributions of the fluctuations associated to the inertial waves, at t0 (a) and t0 þ Dt (b) (Dt corresponds to an half
disk rotation period). The frequency filter is centered around the dominant low frequency in the core in the last part of the cavity

(0:75 < R=R2 < 0:9). The fluctuations travel axially from the stator boundary layer to the rotor boundary layer.
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paradoxically enough, the swirl ratio in the core for
ReH ¼ 15625 departs less from the value for the simi-
larity solution than for smaller Reynolds values.

One quantity of primary importance for engineering
applications is the torque transmitted from the rotor to
the stator. This quantity has been the object of many
investigations and correlations have long been estab-
lished valid for specific flow regimes (Daily and Nece,

1960). The correlations for the two regimes character-
ized by separated boundary layers usually referred to as
II and IV (Owen and Rogers, 1989) (regime II is laminar
and IV is turbulent) are Cm ¼ 1:85G1=10Re	1=2h and Cm ¼
0:051G1=10Re	1=5h respectively. The first four rows of
Table 2 summarize our findings in configuration CV1
compared to the above correlations in the appropriate
flow regime. It can be seen that the agreement, although
generally good, is better in the turbulent than in the
laminar regime. The last two lines present similar com-
parisons for the geometrical configuration without the
inner hub. As can be seen the agreement is now much
better in the laminar regime, and the differences ob-
served for the first geometrical configurations can thus
be ascribed to the difference in boundary conditions
on the inner hub (the correlations proposed by Daily
and Nece (1960) were established for a rotating inner
hub).

Fig. 8. Radial distribution of the angular rotational velocity of the core

ððV =RXÞ H=2ð ÞÞ for five Reynolds numbers: ReH ¼ 1300 (Reh ¼ 8:3�
104, stationary solution), ReH ¼ 1400 (Reh ¼ 8:9� 104, mono-periodic

oscillatory solution), ReH ¼ 1500 (Reh ¼ 9:6� 104, transitional solu-

tion), ReH ¼ 5000 (Reh ¼ 3� 105, partially turbulent stator boundary

layer), and ReH ¼ 15625 (Reh ¼ 106, the stator and peripherical

shroud boundary layers are turbulent); cavity CV1.

Table 2

Torque coefficient on the rotor

Reynolds number Computations Correlations

ReH ¼ 1300 (II) 6:7� 10	3 5:2� 10	3

ReH ¼ 1500 (II) 6:3� 10	3 4:9� 10	3

ReH ¼ 5000 (IV) 3:5� 10	3 3:3� 10	3

ReH ¼ 15625 (IV) 2:4� 10	3 2:6� 10	3

ReH ¼ 1440 (Cheah-II) 4:6� 10	3 4:7� 10	3

ReH ¼ 4838 (Cheah-IV) 2:7� 10	3 2:7� 10	3

Fig. 7. Spatial distribution of the averaged azimuthal velocity component (V =HX) for ReH ¼ 5000 (a) and ReH ¼ 15625 (b); cavity CV1 (stator is

on the top (1) and rotor is downside (0)).
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In addition to these mean values, the axisymmetric
numerical simulations give access to the space and time
dependence of the wall shear stress coefficient. Fig. 9
presents several radial distributions of this quantity both
on the rotor and on the stator. These different curves
correspond to the time averaged distribution, a typical
instantaneous distribution and the maximum and
minimum envelopes in time of the instantaneous distri-
bution. As can be seen all four curves cannot be dis-
tinguished for the rotor side, which confirms, if still
needed, the steady character of the rotor boundary
layer. On the other hand, these curves are widely sepa-
rated along the stator side, indicating fluctuations of
large amplitude. Starting from the upstream corner, the
distance between lower and upper envelopes increases at
first in the transition region, corresponding to the am-
plification of the travelling waves, reaches a maximum
around R=R2 ¼ 0:8 where the turbulence intensity is
maximum, and then steadily decreases further down-
stream. It can be also seen that the fluctuations above
the mean are of larger amplitude than those below the
mean, indicating a non-gaussian probability distribu-
tion.

4.2.2. Second-order moments
All second-order moments were computed for both

Reynolds values of ReH ¼ 5000 and 15 625. To start this
presentation, Fig. 10 displays the fields of turbulent
kinetic energy determined for both Reynolds numbers.
As can be seen these fields are consistent with the
phenomenology already described. At the lower Rey-
nolds number the turbulent kinetic energy is maximum
in the stator boundary layer at around R=R2 ’ 0:8,
whereas for the largest value of the Reynolds number,
the location of the maximum is shifted to the down-
stream part of the rotor boundary layer, just before the
corner between the rotor boundary layer and the outer

shroud. Note that for ReH ¼ 15625, the secondary
maximum in the stator boundary layer found at
R=R2 ¼ 0:85 is three times smaller than the maximum
value. This means that when the rotor boundary layer
becomes turbulent it is characterized by turbulence in-
tensities much larger than those found along the stator.
Similar behavior has been reported either experimen-
tally (Cheah et al., 1994) or numerically (Randria-
mampianina et al., 1997).

Axial profiles (from the rotor to the stator) of the
components of the Reynolds stress tensor at one radial
location corresponding to the maximum of turbulent
kinetic energy found for ReH ¼ 5000 (i.e. R=R2 ¼ 0:8)
are displayed in Figs. 11 and 12. These quantities are
displayed using two different scalings. In Fig. 11, the
values U 0

i U
0
j are scaled with ðRXÞ2 whereas in Fig. 12

they are scaled using the modulus of the friction velocity
in each boundary boundary layer, which explains
the discontinuity at z ¼ 1=2. These scalings have been
used in Cheah et al. (1994) and Itoh et al. (1990) re-
spectively.

Fig. 11 shows that the dominant contribution to the
turbulent kinetic energy comes from the azimuthal
component which is 8–10 times larger than the contri-
butions from the radial or axial components. When
scaled using the friction velocity (Fig. 12), the profiles of
these turbulent intensities for both Reynolds numbers at
the location corresponding to the maximum of the tur-
bulence intensity in the stator boundary layer exhibit
striking similarities, both in amplitude and in shape.
Locations of the maximum of the turbulence intensities
for the radial and azimuthal velocity components are
found at a distance of approximately 15 wall units, in
agreement with the results of Itoh. The maximum for
the axial component is located approximately 10 times
further away from the wall. These similarities between
the normalized Reynolds stress distributions for both
Reynolds numbers are somewhat surprising since one
might think that the flows corresponding to these two
Reynolds numbers would not pertain to the same flow
regime and their turbulence characteristics would scale
differently.

4.2.3. Kinetic energy budgets
A kinetic energy budget was computed for the Rey-

nolds number value of 5000 (Reh ¼ 3� 105), in the
stator boundary layer at R=R2 ¼ 0:8 (Fig. 13). As said
earlier, the computation of such a budget requires the
computation of the third order moments, which implies
very long integration times. A good test of the accuracy
of such a computation is to compute the balance which
should be close to zero. We have also checked the va-
lidity of the kinematic relationship between the turbu-
lent kinetic energy and the viscous dissipation rate
ð� ¼ 2mðo

ffiffiffi
j

p
=oNÞ2 or � ¼ mðo2j=oN2ÞÞ at the wall, which

is an indication that enough resolution was used within

Fig. 9. Radial distribution of the local wall shear stress (sw=
ð1=2ÞqX2H 2) for ReH ¼ 5000 (Reh ¼ 3� 105). The curves for the stator

(resp. rotor) side are plotted as positive (resp. negative) values. 1: av-

erage distribution, 2: minimum envelope, 3: maximum envelope, 4:

instantaneous distribution; cavity CV1.
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the viscous sublayer (we have checked the second form
which is more demanding numerically).

This kinetic energy budget exhibits some similarities
with those corresponding to other types of flows, but
presents some peculiar features due likely to rotation
effects. The general trends exhibited by all the terms in
the budget are similar to those found in channel flows
(see e.g. Eggels et al., 1994). In particular the maximum
of the production is located at yþ � 20. It is noted
however that the production rate of the turbulent kinetic
energy goes to zero in the core region, which is due
to the vanishing of the gradient of the mean flow, and
to the quasi-linear radial variation of the azimuthal ve-
locity component in the core.

Out of the viscous sublayer, the budget does show
some specific features. In particular, the turbulent dif-
fusion is larger than the velocity–pressure correlation
or the viscous diffusion, a trend which differs from the
evolution observed in channel flows or along flat plates.
Indeed, the turbulent diffusion plays a major role in the
log-law region by balancing the production term, a role
which is classically devoted to the viscous dissipation
which in this case accounts only for 50% of the total loss
term. The important role of turbulent diffusion has ob-

viously to be linked to the low level of the viscous dis-
sipation rate. Does this come from the assumption of
axisymmetry, which indeed suppresses the azimuthal
contribution or does it come from rotation effects, as
was pointed out in some theoretical and experimental
studies? Experimental (Ibbetson and Tritton, 1975) or
numerical studies (Cambon and Jacquin, 1989; Bardina
et al., 1985) of a damped turbulence submitted to rota-
tion, have indeed reported an inhibition of the energy
transfer from small to high wavenumbers which re-
sults in a reduction of the viscous dissipation rate. It is
thus hard to say now if the assumption of axisymmetry
we have used is responsible for the increased role of
turbulent diffusion, or if this is due to rotation effects
alone.

The inertial waves in the core are another mechanism
which can play a role in the turbulent transport. This
mechanism is probably complex since: on the one hand,
these waves are kept excited by a fraction of the shear
production at the wall; on the other hand it has been
suggested that they could be responsible for a turbulent
transport from the core towards the walls (Ibbetson and
Tritton, 1975). The discussion of the instantaneous flow
characteristics has shown that the pulsations associated

Fig. 10. Spatial distribution of the turbulent kinetic energy (j=H 2X2) for ReH ¼ 5000 (Reh ¼ 3� 105) (a) and ReH ¼ 15625 (Reh ¼ 106) (b). The

maximum value of the turbulent kinetic energy at ReH ¼ 15625 is twice that for ReH ¼ 5000; cavity CV1 (stator is on the top (1) and rotor is

downside (0)).
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with the inertial waves in the core, are concentrated
on the upper bound authorized by the dispersion re-
lationship. This means that these waves are close to
mono-chromatic, and therefore could not contribute
significantly to any transport of the turbulent energy.
Furthermore, the ratio between a time characteristic of
these waves (siw ¼ H2=mX

� �1=2
, Ibbetson and Tritton,

1975), and a time characteristic of the large scales of the
turbulence (sls ¼ j=�), is always greater than 10 every-
where in the unsteady part of the flow which would
suggest slight influence of the inertial waves on the
turbulence.

5. Conclusion

We have performed numerical simulations of turbu-
lent flows in rotor stator cavities using a finite difference
algorithm based on a multi-domain decomposition
strategy. For cpu limitations, these simulations have
been performed under the assumption of axisymme-
try. Comparisons with existing experimental data have

shown however reasonable agreement, not only for the
first-order but also for the second order moments. These
simulations have indeed confirmed that the flow be-
comes first turbulent on the stator while the rotor
boundary layer remains completely laminar and that
the two boundary layers continue to behave differ-
ently at larger Reynolds numbers. In the turbulent re-
gime, we have shown that the large eddies ejected from
the stator boundary layer into the core keep the internal
waves in the core permanently excited. We have also
shown that the local averaged angular rotational ve-
locity of the core is very sensitive to the flow regime.
Good agreement was found between the time averaged
torque values and experimental correlations. Large de-
viations in space and time of the local torque coeffi-
cient however were found in the stator boundary layer.
Good similarity between the distributions of the Rey-
nolds stresses obtained for the two different Reynolds
numbers was found. A detailed analysis of the kinetic
energy budget has shown the unusual importance of
the turbulent diffusion term. Future 3D computations
will tell whether this result is generic of turbulent

Fig. 11. Reynolds stresses axial distributions normalized by ðRXÞ2 at R=R2 ¼ 0:8. (a,b) diagonal and off diagonal stresses for ReH ¼ 5000

(Reh ¼ 3� 105), (c,d) diagonal and off diagonal stresses for ReH ¼ 15625 (Reh ¼ 106). (1) U 0U 0=ðRXÞ2, (2) V 0V 0=ðRXÞ2, (3) W 0W 0=ðRXÞ2,
(4) U 0V 0=ðRXÞ2, (5) U 0W 0=ðRXÞ2, (6) V 0W 0=ðRXÞ2; cavity CV1. The rotor is located at Z=H ¼ 0 and the stator at Z=H ¼ 1.
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rotating flows or mostly due to the assumption of axi-
symmetry.
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